Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate

نویسندگان

  • Claire Chainais-Hillairet
  • Sylvie Champier
چکیده

In this paper, we study nite volume schemes for the nonhomogeneous scalar conservation law u t +divF(x; t; u) = q(x; t; u) with initial condition u(x; 0) = u 0 (x). The source term may be either stii or nonstii. In both cases, we prove error estimates between the approximate solution given by a nite volume scheme (the scheme is totally explicit in the nonstii case, semi-implicit in the stii case) and the entropy solution. The order of these estimates is h 1 4 in space-time L 1-norm (h denotes the size of the mesh). Furthermore, the error estimate does not depend on the stiiness of the source term in the stii case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimate for the upwind finite volume method for the nonlinear scalar conservation law

In this paper we study the error estimate of the upwind first order finite volume scheme applied to scalar conservation laws. As a first step we also consider the case of a linear equation with space variable coefficients in conservation form. We prove that indeed these schemes lead to a first order error estimate. This work follows our previous paper [2] where we have introduced, in the contex...

متن کامل

A New Convergence Proof for Finite Volume Schemes Using the Kinetic Formulation of Conservation Laws

We give a new convergence proof for finite volume schemes approximating scalar conservation laws. The main ingredients of the proof are the kinetic formulation of scalar conservation laws, a discrete entropy inequality, and the velocity averaging technique.

متن کامل

ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws

ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...

متن کامل

An Error Estimate for Finite Volume Methods for Multidimensional Conservation Laws

In this paper, an L°°(Ll )-error estimate for a class of finite volume methods for the approximation of scalar multidimensional conservation laws is obtained. These methods can be formally high-order accurate and are defined on general triangulations. The error is proven to be of order ft'/4 , where h represents the "size" of the mesh, via an extension of Kuznetsov approximation theory for whic...

متن کامل

Numerical Smoothness and Error Analysis on Weno for the Nonlinear Conservation Laws

In this study we give an a posteriori error analysis on the WENO schemes for the nonlinear scalar conservation laws. This analysis is based on the new concept of numerical smoothness, with some new error analysis mechanisms developed for the finite difference and finite volume discretizations. The local error estimate is of optimal order in space and time. The global error estimate grows linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2001